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ABSTRACT

This report is o theoretical study of the problem of maintaining radio
communications in the presenceof electronic countermeasures. Spe-
cifically, certain idealized exomples are considered in which the
problem is to devise o detector, to be used with o certoin type of
signal, which is as little susceptible to countermeosures as possible .
The criterion according to which performance is to be maximized is
o gome-theoretic one; the applicability of this point of view is dis-
cussed inSec. |. In Sec. |l definitionsarestoted. In Secs. !l and IV
some elementary theory is presented and three examples are worked out .

It is the intention of the author to follow this report with another on
the same subject and the material cf Secs. land Il is designed toserve
os a foundotion for this later report.
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SOME NOTES ON JAMMING, I

I. INTRODUCTIr

This report is a preliminary study, from an abstract point of view, of radio commu-
nications in the presence of jamming or electronic countermeasures. The discnssion is, in fact,
sufficiently abstract that it might apply to other communication problems,. but all the motivating
examples come from the field of radio communications., We restrict ourselves entirely to cases
in which the messages are composed from two-letter alphabets {as is true for commercial tele-
type). This is done largely in order to obtain .. simple treatment, but it is felt that not much is
lost in idea in specializing from n-letter alphabets to two-letter alphabets.

Int ordinary radio communications, reception is hampered by accidental interference,
man-made and natural. Presumably man-made interference can be nearly eliminated if neces-
sary. Natural interference cannot be eliminated, and its effects can be troublesome in certain
circumstances, In studying methods of minimizing natural interference, much use has been
made in late years of statistical methods. Thus receiver noise, although unpredictable, has
well-known statistical properties which can be deduced largely from a theory of its origin; prop-

agation disturbances caused by multiple paths or scatter phenomena are more difficult to get hold

J
Lt

of theoretically, but still some statistical knowledge of their behavier can be gathered which is

useful. In all such cases, something can be done to reduce natural interference or its effects
because, although the precise behavior of nature may be unpredictable, trends and rough out-
lines of its future behavior may be established from a knowledge of its behavior in the past.

In military radio communications, reception may be hampered not only by accidental
interference but also by intentional interference (jamming or rlectronic countermeasures). In
some circumstances, particularly where communicaticns are carried out over a short range,
accidental interference may do negligible harm and the whole problem is that of combating
countermeasures. In this report, we consider only this latter situation. There are some obvi-
ous differences between the situation with intentional interference and that with various forms of

natural interference which we want to emphasize.

(a} In some signal-plus-noise problems, probability distributions governingthe
noise signal are known a priori, It seems meaningless to assign probability distribu-
tions a priori to any parameter governing a jammer's activity (except insofar as the
jammer is expected to choose an optimum strategy in a sense to be made precise be-
low).

(b) In communication problems involving muliipath propagation, say, itseems
plausible to test the propagation characteristics of the channel simultaneously withre-
ceiving a communication. Then empirical distributions of appropriate parameters of
the channel can be obtained which may be of use in predicting its future variation. Al-
though informa‘ion about a jammer can be obtained simultancously with receiving a
jammed message, about the only value of this information is to show what the jammer
can do, not what he will do or is likely to do. Of course, intelligence may be athand
describing the possible range of his activities, and this can be an advantage to thecom-
municator.

(c) Natural interference may consist of the superposition of an unwanted signal
{noise) on the wanted signal or it may consist of some other type of perturbation of the
signal {as in multipath and scatter communication) or both, As yet, probably no one
can jiggle the mechanism of propagation through the ionosphere and troposphere; so,
for radio jamming, one need consider only the case where the interference consists
of a jumming signal superposed on the communication signal,
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We have first to consider the conceptual problem of how to approach the communication-
through-jamming situation theoretically. We adopt the [vilowing point of view: it is desired to

find from some limited choice of modulation-detection schemes one that will minimize the eifect

of the most harassing clectronic countermeasurces the enemy can use. The phrase "limited
choice" is used simply because we do not hepe to solve the problem in full generality; the phrase

"
<

an use" js mcant to imply that there is some sort of limitation, usually a cost limitation, on
the measures available to the enemy. This notion can be expressed in symbols. Suppose the
modulation and deteclion schemes available can be indexed by a variable £, and the counter-

signal schemes available can be indexed by a variable n. Let M be a figure of merit for the com-

munication; M is a function of § and n. Now, il § and n completely determine the mechanism of
communication and the countersigral, then M is an ordinary (real-valued) function of § and n;
if, on the other hand, £ or n indexes a communication or countersignal "scheme" in the sense

that it specifies a probability distribution for certain parameters which are allowed to vary, then

M is a random variable. (The second use of the indices includes the first if one allows singular
probability distributions.)

To get a numerical-valued figure of merit, one may take
M) = E {Mgn))

In particular, let M(§,7) be one if the signal is correctly received, and zero otherwise. Then
M(g,q) = P(En)

is the probability of correctly receiving a signal; this is the figure of merit we shall use. Now,
according to our intention as postilated above, we seek a £* such that
min P(£%n)
n

is as large as possible,

Since the enemy does not know which £ is chosen, he seeks an W* such
that '

max P(£,n*)

is as small as possible, This formulation leads to notions already current in the theory of zero-
sum two-person games, and we shall, in the sequel, adopt the terminology and use some resulis
from this theory. We call the team of communicators player 1 and the enemy, player II. ¢ and
n are the mixed strategies of players I and 1T, respectively, P({£,n) is the payoff function, andwe
may say that II pays I since it iz for I's advantage to have P(¢,n) as large as possible_,.;d to II's
advantage to have P(£,n) as small as possible. We let IT designale the transmitter of the com-

munication team and IR designate the receiver, In the games we shall form with payoff function
P{€,n), the upper value of the game becomes the smallest probability of correct reception that
the jammer can guarantee, and the lower value becomes the greatest probahility of correct re-

ception that the communicators can guarantee. A good strategy for player I specifies a commu-

nication scheme optimum within a given class of schemes; a good strategy for player 1l specifies
a type of countermeasure optimum within a given class.
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SECRET

In the last paragraph, we have, in a rough general way, set up an abstract problem
which is to represent the real-life communication-through-jamming problem. This fermulation
is not a thing to be proved or disproved mathematically; the author feels it is one reasonable
formulation. The essential point is, of course, that we are adopting a minimax-type criterion, ‘ i

How can oneg beat jamming? First, by finding the best communication system among ‘
those available s0 as to maximize the probability of correct reception per s\ignal; second, by
using repetition or some lform of redundancy.

If the communicator is limited to systems in which, at best, he cannot get a satis-
factory probability ui correct reception per signal, then so lorg as this probability is strictly
greater than onc-half, by repeating the signal enough times he can get an over-all probability of
correct reception as close to one as desired. Thus, if in a given situation one can find £* such
that P{£*,m) > 1/2 + € for all m, ideally the communicator can beat the jamming if he can afford
the necessary redundancy. In practice, this means, of course, if his time-bandwidth productis
sufficiently large. On the other hand, P{£,n) can be raised, in general, if the number of avail-
able communication schemes can be enlarged; the communicator, by having more alternatives at

hand, can force the jammer to "scatter his shot! This again means in practice, the greater the

time-bandwidth product usable by the communicator, the better his chances of combating jam-

ming. We shall discuss specific problems in Sec.IV of this report where P(£*,n) is very little
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greater than one-half and repetition is necessary. In Part II (to be published) we shall discuss
"coded” systems (sec Sec. Il of this report) for which the redundancy is built in the form of a

large number of alternatives for the communicators.

II. DEFINITIONS

A signal space is a set X closed under a commutative binary operation which we de-

note by +. A countersignal space is a subset Z of X, A message is a sequence of MARKS and

SPACES. Given a signal space X and countersignal space Z, acommunicationfroml toIR com-
prisesthe following sequence: ITis in possessionof a message {l}n. n=1,..., N, In = MARK

or SPACE, »™ich he maps into a sequence {x ,n=1,...,N,i_ =0, 1, of elements from X

(or signals). il adds an element z ¢ Z (or c:ﬁn?ersignal) to each :n.‘ IR receives the sequence
{x“i + zn}n, decides for each n whether xni + 2z represents a MARK 'or SPACE and translates
his sequence of received signals into a message. It is understood in advance by IR that xno is
to represent a SPACE at the nth place and xnl is to represent a MARK; i.e., the sequence of
mappings used by IT to go from M and S to the signal space are known to IR' They are not nec-
essarily known to II. 1I never knows when he adds z, to xni whether the i at the nth place is a
zero or a one. There are two natural subcases of the class of communications described above.
The first is the known fixed signal which is discussed in this report and the second is the coded

signal to be described in Part II (to be published).

A. Known Fixed Signal

Xy =Xg ¢ X for every nand x = x; ¢ X for every n, xg and x| are known to II as
well as to IR' Conventinnal radio telegraph or teletype systems belong in this category.
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B. Coded Signal
is, in general, different from x,, ., n # m, and x, is, in general, differentfrom

and s, for any n. Thus IT and IR must have a "code," not"kknown to

Xn

xmx. IT does not know xno
I, for ciphering messages into sequences of elements from X, and deciphering.

Fundamentally, detection is the process of translating elements from the signal space
into MARKS and SPACES; it is the function IR must perform on each received signal in order to
reconstruct the message. However, we sometimes want to allow detection procedures which give
a translation "either MARK or SPACE" or even "MARK with probability p or SPACE with prob-
ability (1 — p)}" to some element of X. Such "detection® can be meaningful in cases where thereis
repetition or redundancy. Thus, a detector is represented mathematically as a functional on X
taking on at least two and perhaps a continuum of values, However, for reasons that will become
cvident, we state a formal definition of detector, to be used below, in a slightly different form.

A detector is an n + | -tuple (fl. cee fn. D) where fl, e fn are real-valued func-
tionals on X, and D is a decision-valued (taking on two or more values) function on the subset of
R" which is the image of fl' e fn. We shall sometimes call (fl. e fn) the filter, and Dthe
decision function, Two filters “1' . fn). (gl, e gm) are cquivalent for a given signal space
X if for any decision function D to be used with “1‘ Cees fn) therc is a decision function D' to be
used with {gl. e gm) which yields the same decision for every x ¢ X and conversely.

Remark 1: Two filters f = (fl. cey fn) and g = (gl, ce gm) are equivalent if and
cnly if for every x and y ¢ X for which f(x) = f(y), g{x) = gly), and vice versa,

Proof: Take I)' as given by D'[g(x)] = D[f(x)], x ¢ X. The proof that D' is a decision func-

tion is obvious.

111, EXAMPLES

Example 1: Keyed Carrier

This is a fixed signal system in which the presence of the RF carrier indicates a
MARK and its absence indicates a SPACE, Precisely, the nthletter of the message is mapped into
the zerofunctionoft, (n — 1)Tg t< nTif it is a SPACE andinto, say, Acos ut, (n = 1)T gt <nT
if it is a MARK, For a per-signal analysis, we need consider only theinterval [0, T], then Xq = 0,
0gt<T, Xy = A cos wt, 0 gt < T, The signal space X may be taken to be the class of all func-
tions of integrable square on [0, T) (we write this L, (o, T]), and the counter signal space Z to be
a subset of X to be specified,

The choice of the signal space X is somewhat arbitrary in this example, or indeed
in any fixed symbo] system. The signals are real-valued functions of a real variable t over a
finite interval [0, T] and obviously the countersignals should be also. Hence X will be a space of
real-valued functions on [0, T]. The operation + should be ordinary pointwise addition of func-
tions because the electromagnetic {ield components that the signals x and countersignals z rep-
resent add this way. X must include all functions of the form X +2,1i=0,1, 2 € Z and, for

convenience, we have required in our definition that Xgr X; € X and Z € X. It is convenient to

choose X to be a linear space, and since the Lz-norm of a signal function can be interpreted
immediately to be the energy of the signal, and since we shall suppose all signals to be of f{inite
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energy, L, [0, T] will do as a choice for X, LZ[O,T] is really too large, but for the fixed signal
case this does not matter very much, for it means only that the filter of the detector be defined
on an unnecessarily large domain. The choice of the countersignal space Z is more delicate

since it reflects the latitude we allow the opponent, player II. It is reasonable to suppose that 11

is limited to a finite energy a per signal, so every z ¢ Z must satisfy

T \
f zz(t) dt\<a2 . i
0

We could let this be the only restriction on z {(we do this in a later example) and so take Z to be
the subset of LZ [0, T] contained in the sphere of radius a. However, here we further restrict Z; ©

in fact we require in addition that

T
f z(t) X (t)dt =0
0

for every z ¢ Z. The motivation for this requirement is as follows: in practice T is likely to
include a great many periods of cos wt so that signals of different frequency will be nearly or-
thogonal to cos wt. Ewvcn if the enemy attempts to send a signal with a cos wt component and his
frequency is slightly off or there are occasional phase drifts due to shifting propagation condi-
tions, then his countersignal will still actually be nearly orthogonal to cos wt over [0, T]. Note
that this is equivalent to saying that we may expect the energies of the signal and countersignal
to add. To avoid giving an unrealistic advantage to the communicators, we shall require, when
we discuss detectors for the keyed-carrier type of communication, that the receiver is no better

able to duplicate the phase and frequency of the transmitter carrier than is the jammer,

Example 2: Frequency-Shift Keying

This is a fixed-signal system in which

X xo(t) =.A cos uot
0gt<T

X xl(t)=Ac05ut

1 1

We shall suppose what is nearly true if wg =% W that cos uot and cos wlt are orthogonal over
{0, T}). We again take L., [0, T] for X, and for Z we take that subset of X consisting of elements
z which satisfy:

T 2
f z°(t) dtga
Q
T
f z{t) cos wyt dt
0

T
f z(t) cos wlt dt
0

The justification of these choices of X and Z is the same as in Example 1.
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Example 3: Correlation Detection

We want 1o consider both a fixed-signal system and a coded-signal system. In the

fixed-signal system [Example 3 (a)] we take

;\:O = -—X(l) N
0gt<T , Example 3{a)

X x({t) N

it

1

Xs= LZ[O, T} and Z that subset of X vonsisting of all elements z satisfying

T 2
f z"{tydtga
0

We call this example the "correlation detection system" because the phase sensitivity of the de-
tector required by the type of signals postulated is conventionally obtained by using a so-called
correlation detector, It will turn out that this example is ideally a natural one, since only linear
filters need be considered in the detector,

Ixample 3(b) is the same as o) exeept that X, and hence Z, is to be further re- .

stricted and

<
[0}

~x_ ()

(n-1)Tgt<nT , Example 3(b)

b
]

xn(t)

where xn(t) ¢ N and is not known to the enemy. We shall specify X and 2 in the section devoted

to this example.

IV. FIXED-SIGNAL CASE
For fixed-signal communication, the communicators have freedom only to specify a
receiver or detector in an effort to outwil the jammer. This is the case discussed in this sec-

tion.

The appropriateness of the mathematical notion of a game in the study of communi-
cation through jamming was argued in the introduction. For convenience, we now introduce the
term D-game to mecan a zero-sum two-person game which has a payoff function taking or values
only between zero and one, including zero and one.

The games we discuss are D-games in which there is a one-to-one correspondence
between pure strategies for Il and countersignals z and, in this section, between pure strategies
for I and detectors D. To be succinct we shall refer to a "strategy z (or D)." If in a particular
context D = (f, d) and the filter [ is fixed while the decision function d is free, we shall refer to
a "strategy d. Before investigating the examples introduced in the preceding section, we set
down precisely a few rather obvious general facts about the kind of game we are considering,

We use a simple concept of equivalence between games;* briefly, (1) games G and G' are

*See Blackwell and Girshick, Theory of Games and Statistical Decisions (John Wiley, New York, 1954), p. 11
for o formal definition.
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equivalent if an elimination of duplicated sirategies for either onc of I or Il in G yields G', and
(2) G and G' are equivalent if there is a finite chain G, G GZ' s Gn. G' such that each ad-

£

jacent pairv satisfies {1). 'This sort of equivalence prcsorxvos lower value v, upper value v*, and
value v (if it exists), We are especially concerned with lower value because it is the highest
probability of being correct that I can guarantee himself,

Remark I: If f ~ g, then for any D-game with fixed [ilter I, there is an equivalent
D-game with fixed filter g. A

Proof: It is obvious. We say the filter [ is [iner than the filter g with respect to X if for

every x, y € X for which g(x) # gly), f(x) # [{y).

Remark 2: If { is finer than g, there exists a filter § ~ g such that for every £ in

the image of g there exists an xg ¢ g -1 {§) for which

f(xg) = g(xg)

Proof: Choose x, to be any point in g'l (¢). Define g by

£
¥e ) - fix, )

& obviously satisfies the stalement. We shall say [ comains g,

Remark 3: If [ is finer than g, given any set S of strategies for II, if there exists a
D-game using § and g with lower value v,, then there exists a D-game using S and [ with lower
value v', > v,.

Proof: Choose ¥ ~ g and contained in f by 2. Let G be the game using S and g. Then by 1,
there is a game G using S and :«.:r equivalent to G, and hence with lower value v,. Now form a
D-game G' using S and f where a subset of I's strategies are obtained as follows: for each d in
G define d' in G' by d'[f(x)] = & if x ¢ E'l (¢). Then 1 has available in G' cvery strategy he had
available in G, hence the assertion.

Remark 4: Let f contain g, and Xg and x; be fixed. Let X C X be the set of points
on which f and g agree. Suppose there exists Z < Z such that

(a) x +z<)N( forallztz, x1+zei forallz:i.

0

(b} For cvery £ for which Xg +z ¢ g'I (£} for some z ¢ Z, there exists

~ ~

z ¢ Z such that x, +2 ¢ g-I (£).

The same condition exists with X, replaced by X, Then given a D-game G with II's strategies
any subset 5 of Z, with any sct of strategies for I using f and with lower value v, there exista
a D-game G' with I using g with lower value v, > v,.

Proof: Restrict G by allowing Il pure strategies only from S N Z. Call this restricted
game G. Then the lower value ?/* of G is not less than v,. Since in G the only elements of X that
can occur are of the form X, +2z, i=0,1, and for these { and g take on the same values, I can
replace { by g and his set of strategies remains unchanged. Thus é can be realized with I using
g. Finally if II now replaces the strategies S N 2C a game G' is formed cquivalent to 6., since
cach strategy inS N 2C is equivalent ‘o onc in § N Z. Hence Vi 2 V.
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Remark 3 makes the obvious point that if the communicator allows himself more
complicated detectors, he will not iose anything. Remark 4 shows that in gperial circumstances

there is a kind of complication that also will not gain him anything provided, of course, that the

enemy uscs his wits.

We have need in the sequel to bound the value of a game from above. The following
very simple estimate is uscful. .

Remark 5: Let " be a zero-sum two-person game with payoff function P(e, g} defined
on tle reciangle [0,a] x [0,b], « denotes a pure strategy for player I, g for 1I; G denotes a mixed
strategy {Stieltjes measure) for I, 17 for II. We suppose II pays I. Then if there exists a meas-

urce Fr, such that
fP(a,b) dFo(B)s k

for all e,v, £ K.

Proof: v, = sup inf fdG (a)fP(a. g) dF () .
G F

B koAb | O At o ST, %

Let G( be a strategy such that

fdG( (a) [Pla,p) dF(B) 3 v, — ¢ for all F .

Then in particular, ;
Ve = <\<fdG‘ (e} e k=k .

This relation is independent of E, hence v, g k.

e A Rders. s

Keyed Carrier (Example 1 of Sec. III)

We have already aésumed that any countersignal available to II is orthogonal to x (t)
on [0, T]. This assumplion was not made to simplify the problem, for it does not. Indeed, Ex-
ample 3 is essentially the same as this one with this assumption removed. It was made to cover
cases in which it is unrealistic to suppose that the enemy can duplicate the frequency and phase
of the carrier signal. In such a case, the receiver could ideally tune out the countersignal and

i i - At

perfect communication would result, But this is unrealistic (unless we are dealing with an in-
ferior enemy). So we suppose that there is a (narrow) band of frequencies containing the carrier
frequency which the receiver cannot tune out, and, in fact, which the receiver cannot further de-
compose which is available to II. That is, we shall suppose that the only characteristics of a

signal appearing in this band which the receiver can determine are those that are functions of

S L TN RS 127 P S

corsis

amplitude.

-

The situation may be idealized as follows: Let L(xz) be the linear subspace of
L, [0, T] generated by X5, let M be a linear subspace of L, {0, T] containing L(xl) and let N be
the orthogonal complement of L(x]) in M. We shall suppose that if x and y both belong to M and
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x|, = {fo x4(t) dt} 1/z | {fo YA dt} 1/2 ol

then for any available filter f, f(x) = {(y}.

Let the filter f be defined as follows:
write ye L, [0, T]asy = Yymt¥s where Ym e M Y ¢ M° (the orthogonal comple-
3 ment of M in Lle T]). then f(y) = HJMHZ

< Remark 5: Let [ be any filter containing IO. Then the conclusion of Remark 4 holds
with g = fo.

Proof: By hypothesis { and f, o @gree on M soX = M. LetZ =N. Then the conditions 4(a)
and 4(b) are satisfied.

LSS

Thus, within the restriction that we have set, the simple filter which projects on a

v

linear subspace and then determines norm is as good as any against jamming. The obvious
physical device to approximate this abstract "filter" is a flat bandpass filter (filter in the usual
sense) followed by a square-iaw device., We may now, in this example, confine our attention to
D-games in which I uses fo and II takes all his pure strategies from N. The decision functions
used by I will have for domain some subsct of the positive real line; in particular, if we take
”\l” = 1 and limit II's power, i.e., consxder only z for which || zH ; <a the domain of the de-
cision functions wili be the interval [0,2a + 1] We now use Remark 5 t{o find an upper bound on
v, for any D-game in which I uses fo and II uses strategies from N. Notice that II may confine
his strategies to u one-dimensional linear subspace of N and hence that his strategies may be
indexed by the set of real numbers [0, a].

Remark 7: Let G be a D-game with x, and X, as specified in this section in which I
uses the filter f, and II's strategies are of the form azgs 2g € N, e¢ a real number, where
||(zo)H§< a. Then the lower value of G is less than or equal to 1/2 + 1/2a.

Proof: Let ||z, |Z= 1, and map II's strategies onto the interval [0, a] by carrying az; = a.

SRR LY T

Let d‘3 be the decision functién corresponding to any particular strategy g of I. Then if Il uses

AR B LR a A e e b

3:'; the pure strategy e, the payoff is
&
;;; dB {a +1) +[1 —dp(a)] :
;- 2 . g
i
g;a; Hence, H
z L (® pip.a) da = 2 d 1 dy b ode gt + >
2 Y 0 {Bsa) a = 5= { {a+1)+[1 - a)) Q —Z- Fry i
Fer {
5 for all 8. The conclusion follows from Remark 5. ;
% Remarks 6 and 7 together assure us that in a fixed-signal keyed-carrier system with
%e ratio of jamming power to signal power equal to a and under the restrictions on receiver and ,
g jammer which were imposed, the communicators cannot guarantee themselves a probability per J
j‘i symbol of being correct greater than 1/2 + 1/2a. i z
3
E‘;: We now exhibit a particular game of the type being discussed which has a value nearly
“w

achieving this bound, A good mixed strategy for I in this game, one of which.we shall show,
specifies a nearly optimum detection scheme for the communicators,

[<=]
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Iror any g > 1 we define d‘3 as follows:

dgls) =0, 0gs<p

=1, Bgs
That is, we call the signal a MARK if the output of the filter is greater thap or equal to g, and a
SPACE octherwise. The pure strategy p for I is then the strategy corresponding to the detector
d,). Since the reccived signal is of the form y = x; + Na 2gr foy) =8 +a, 6=0ifx 6=

f
0’ "p
Lif Xy 0 < aga. Itfollows then that for strategy p for I, the payoff as a function of a is given
by
QcacB -1 P = 1
Cga<p-1! =5

B-lgac<p P=1
1
P=3

fgaga

We shall call this game Gl‘ It follows from a general theorem that this game has a value* how-
ever, we shall show this fact directly. If a game G'1 is formed from Gl by removing some of I's
strategies while leaving II's strategies unchanged, and if G'l has a value v', then v' £ v,, the
lower value of GI; similarly, if a game (‘v'l’ is formed from G1 by removing some of II's strat-
egirs while leaving I's strategies unchanged, and if G‘l' has a value v", then v" > v*, We shall
find finite games G| and G|. which therefore have values, such that v! = v" = v. Good strategies

for G| and G'l' are then good strategies for Gl' This technique amounts to no more really than

making a shrewd guess at good strategies and then testing them,
If n-1ga<n, na positive integer, form Gi by allowing I the set of pure strategies

{1, 2, ..., n}, i.e., p=1, B =2, etc., The resulting game is easily seen to be equivalent to a

finite game with the following payoff matrix,

1 1
7 . . . -Z‘ l
1 1
a 7 . 1 *Z—

Al
1 1
1 5 -7
1 g
This game has value
o D=1 1_ _l_ = _1. —l..
vViEenm e etnt 2t

*S. Korlin, Contributions to the Theory of Games {Princeton University Press, 1950); Vol. |, "Operator Treat-
ment of Minimax Principle.’
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and a ygood mixed strategy for I is that which weights evenly each pure strategy. Form G" by
allowing 1I the set of pure strategies 0, 1, ..., n=1, G" is easily seen to be equxvalﬂnt to a
finite game with exactly the same payoff matrix as above. hence

=V

1
t

ol

V" -

To summarize, the detection scheme specified by (f , dp)*where B8 is chosen ran-
domly with a uniform distribution from the integers I, ..., n, n—1 ga <n, where f and d‘
are as defined above will guarantee the communicators a per-signal prcbabxmy of bemg ccrrect
of 1/2 +1/2n. No other available filter will do better than fO' and no decision scherne exists
which will make the probability greater than 1/2 + 1/2a. Whether or not this value can be

achieved is left an open question,

Frequency-Shift Keying (Example 2 of Sec. III)

The discussion concerning the previous example is largely applicable here. We let
L{x;), i=0, 1, be the linear subspace of LZ[O’ T] generated by x: M;, i=0, 1, be a linear
subspace properly containing L(xi), and Ni’ i=z0, 1, bethe orthogonal complement of N in M
We suppose MO is orthogonal to M1 and that Z is a subset of N1 + No. Let T be a filter defmed
as follows: £ (fo. f.), where f (x) and f (x) are the norms of projections onto MO and Ml' re-
spectively. That is, f and f are defmed exactly as was f in the previous example.

Remark 8: Let fbe any filter containing f Then the conclusion of Remark 4 holds
with g = T

Proof: Let the Z of Remark 4 be Ny = N|. .

In this example there are two reasonable constraints on jamming power: (1) the total
power in both MARK and SPACE channels may be limited and (2) the power in each channel may
be limited individually. In either case, we can get an upper bound on v, in the same way as in
the preceding example.

Remark 9: Let G be any D-game in which II uses strategies z = azg + Bz v Zp e N0

||az || g£a, |||32 H a, and in which I uses f. Then

I_.

v, +

« €

|~
-
™

2a

Proof: Let d(yo. yl) be a decision function, then by Remark 5,

a a [dlz,+1, z,}) +1 =dlz,, z, +1)
"*S—lz'f f { : x z et }dzod2
a 0 0 1

1.1 1
$ztaT 5z
2a

The same bound can be obtained in essentially the same way if the constraint Hzllg = ais im-
posed. It would seem that I « Lzut to be able to guarantee himself a higher payoff in this example
than in lhe first onc, and the above estimate of v, perhaps strengthens this supposilion. I have
not yet, however, worked out a game showing this. It is trivial to describe a game and strategy
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in which v is asymptotically 1/2 1 1/2a. In fact, if MARK and SPACE are detected independ-
ently, each as in Example 1, there are available after each signal two judgments as to what the
signal was. 1If (M, M) is called M, (S,8) is called S, and (M, S) and (S, M) are ‘callem}d no decision
(equaliy probable MARK or SPACE) then the payofl is exactly as in Example 1.

Thus, for the idealized FSK, we can specify an optimum filter and a mixed decision
function that will guarantee exactly as good detection as guaranteed by the detector specified for
the previous example. The question of a best or even an asymptotically best mixed decision

function is left open.

Correlation Detection (Example 3 of Sec. III)

In this example we suppose that the receiver can duplicate not only the form of the
transmitted signal but also its phase. In order to make the situation interesting, we suppose
that the enemy can do the same. Again X = LZ[O' T} with + being ordinary linear space addition;
Z is a subset of L’Z[O' T), and the only restriction that need be impnsed on Z is that || ZH§$ a,

z ¢ Z. We assume X, = x(t), 0gt<T,

v
f CWwat=1
0

and Xg = -x(t}. Let f be the filter defined by

. T
fly) = f x(t)y(t) dt
0

This filter is as good as any from our point of view.

Remark 10: Let f be any filter containing f. Then the conclusion of Remark 4 holds
with g = f.
Proof: Let the 2 of Remark 4 be the one-dimensional linear space spanned by X
Renlark 11: Let &G be any D-game in which II uses strategies z = ax,, e?< a, and
in which [ uses f. Then

1 1

vV, &5 +
*
RPN Y

Proof: Let d{y) be a decision function, then by Remark 5

+Na
v. < 1 d(z+1)+lz—d(z—1)dx
2va J-Va
S = .
2V a i

We now construct a D-game in which 1l can guarantee himself a probability of being

correct which is asymptotically equal to the upper bound established in Remark 11,

Let I use the filter F Then since f'(y) is a real number for any ¥y ¢ X, the domain of
definition of the decision functions to be used by I is the real line, For each $ > 0 define a de-
cision function dB as follows:

12
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Halo S

5 . dp(ﬁ) =0 £ <—-P

¥

& 1

b lelss ‘

5 )

E. = 1 R g > ﬁ
Players I's set of strategies is the interval [0, «]; choice of strategy B, B ¢ [0, 0] means that
player I uses the detector (f\;dp). Player Il chooses a counter signal ex;, a” & a. Since x = Xg
or x, cach with probability one-half, it will be evident that the sign of a is immaterial, II's set

: of sirategics is the interval [0, ¥2'). The payoff P as a function of a and § is given by the follow-

I ing table,

B<i 0ga<l—p P:1

t B<l 1-Bgag!l+p P=3/4

; B<i 1+B8<a P=1/2

i B>l 0gagp-1I P=1/2

-

; g>1 B-1<agpB+1! P=3/4

B> B+1<a P=1/2

-

A diagram of the "matrix" of the game is:

g,

Player Il's
Strategies

Player I's Strategies

where the values of the payo!f on the dividing lines are given by continuity to the left. That this
zame has a value can be shown by Karlin's theorem*

AT F RO PN TR XY A Y TS e

We list some conclusions about this game, all of which can be obtained from elemen-
- tary.arguments:

(1) The value v of the game is monotonic nonincreasing as a becomes larger,
This is true because, given a < ay, the game with a; is a reduction of the game with
a, obtained by restricting II's strategies but not restricting I's.

i
RPN
i
|
|
{

(2) Ifa <1, v=1anda good pure strategy for Iis dg. -

. (3) f2n-1<~Na<2n+l,n=1, 2,..., an upper bound for the value of the
game is 1/2 + 1/4n. To show this takea; = 1, a; = 3, ay = 2n =1, The resulting re-
duced game is equivalent to a finite game for which the value is easily seen to be
1/2 + 1 /4n,

*See footnote, p. 10,
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: (4) Y 2n-1g Na<an, n=1, 2, ..., alower bound for the value of the game :
is 1/2 + 1/4an. To show this, take B) = 1 —(2n~ Na), p2 =3 -(2n - ~a), ..., B, = ‘ £
(2n — 1) —(2n ~ §@) = Ja — 1. The resulting reduced game has value 1/2 + 1/4n, A ' P

good strategy for I is the mixed strategy which assigns weight 1/n to each ;. It follows
from (1) that 1/2 + 1/4n is also a lower bound for the value of the original game if :
2n—1 g Na<2n -1, ltis easily verified that in this case if a is replaced by ~a + | : L
in Bj. the same strategy as given above guarantees a payoff of 1/2 + 1/4n.

(5) It follows from (1), (3) and {4) that the actual value of the game is 1/2+1/4n
if 2n~1 g Ja<2n, n=1, 2, ..., and that the value lies between 1/2 ¢ 1/4n and
1/2+1/[4n+ 1)]if2ng Jagan+ 1,

It will be noticed that the communicators have an advantage in this case as com-

pared with the first example; roughly, they can get a probability of 1/2 + 1/2 \/a as compared
with 1/2 + 1/2a, In all of these examples, the best guaranteed probability of being correct

approaches 1/2 as the jamming power becomes infinite.
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